Business Intelligence Pada Industri Pendidikan - Rumah IT

Baru

recent

Business Intelligence Pada Industri Pendidikan

Business Intelligence Pada Industri Pendidikan

Saat ini penerapan business intelligene pada industri pendidikan masih relatif sedikit apabila dibandingkan dengan industri perbankan, kesehatan, asuransi, dll (Lihua, Yongsheng, & Zhonglei, 2008). Penerapan business intelligence pada industri pendidikan dapat dilakukan pada proses penerimaan mahasiswa baru, manajemen pengajaran, dll (Rebbapragada, Basu, & Semple, 2010), (Liu & Zhang, 2010).  Menurut Rebbapraga (2010), persaingan untuk penerimaan siswa baru semakin ketat setiap tahun dengan sebagian besar kampus menerima aplikasi penerimaan siswa dan makin selektif dalam penerimaannya. Tingkat penerimaan pada kampus ternama mencapai 10% dan ketidakpastian menyebabkan siswa yang memiliki talenta melamar pada sekolah pada lapisan yang berikutnya. Hal ini menyebabkan siswa memasukkan aplikasi ke beberapa sekolah dan setiap sekolah memiliki tenggat waktu yang berbeda. Akibatnya siswa sering menghadapi dilema pada saat mereka kehabisan waktu untuk menerima tawaran dari universitas yang lebih rendah dari prioritas mereka. Tantangan dalam admisi proses adalah proses mengidentifikasi pelamar terbaik meliputi beberapa parameter dan saat kandidat yang diinginkan teridentifikasi maka keputusan untuk menawarkan penawaran serta komposisi dari penawaran tersebut cukup susah. Selain dapat digunakan dalam proses penerimaan mahasiswa, penerapan data mining dapat digunakan untuk mendukung manajemen pengajaran. Setiap universitas mengelola nilai mahasiswa dalam jumlah besar dari berbagai fakultas yang berbeda-beda. Dengan adanya penerapan data warehouse dan menganalisa data tersebut dengan menggunakan berbagai teknik data mining, pihak pengelola fakultas dapat mengeksploitasi berbagai informasi tersembunyi dan dapat melakukan peramalan dan analisis sehingga pengelola fakultas dapat menggunakannya untuk meningkatkan kualitas pengajaran dan pengetahuan.


Menurut Rebbapragada et al (2010), para peneliti yakin bahwa data mining dan teknik manajemen penghasilan dapat digunakan secara efektif untuk menyelesaikan masalah tersebut. Dengan menggunakan data mining untuk mengembangkan model yang dapat memprediksi kualitas dari pelamar dengan menggunakan data kinerja siswa pada masa lalu berdasarkan kinerja siswa pada tahun pertama dalam hal GPA yang diperoleh  dan beberapa parameter penting yang dikumpulkan dari data pelamar seperti high school GPA, SAT math score, SAT verbal score, strength of curriculum, adjusted GPA, adjusted test scores, subjective score and overall assessment score. Penelitian ini menggunakan metode neural networks karena memiliki kinerja yang lebih baik dibandingkan decision trees, disamping itu kemampuan neural networks dalam beradaptasi dengan perubahan kondisi membuat metode ini cocok dengan konteks penerimaan siswa baru. Model manajemen penghasilan sudah banyak digunakan oleh perusahaan di industri penerbangan dan hotel, teknik ini dapat memaksimalkan penghasilan dengan mengumpulkan harga terbaik untuk setiap bangku/sumber daya meskipun terdapat ketidakpastian terhadap permintaan dimasa yang akan datang. Pada penelitian ini menggunakan model yang dinamis yaitu markovian periods karena memiliki kemampuan untuk menangani permintaan yang datang secara acak. Tabel harga penawaran dapat digunakan sebagai referensi oleh staf admisi untuk menerima atau menolak aplikasi dari calon siswa. Tabel 1 menyediakan asumsi jumlah aplikasi yang diterima setiap minggu untuk tiga kategori selama 4 minggu, jumlah aplikasi tersebut termasuk pelamar yang diterima dan ditolak.  Tabel 2 menunjukkan tabel harga penawaran untuk periode waktu dengan penambahan 4000, setiap pengumpulan 4000 periode sekitar 3.3 hari.

Business Intelligence Pada Industri Pendidikan
Tabel 1. Jumlah aplikasi yang diterima setiap minggu    
Business Intelligence Pada Industri Pendidikan
Tabel 2. Tabel penawaran harga.
Dengan menggunakan pendekatan diatas, pihak universitas dapat langsung mengambil keputusan terhadap semua pendaftaran siswa dan pada saat yang bersamaan dapat memaksimalkan proses penerimaan  dengan menerima mahasiswa terbaik pada kapasitas yang ditawarkan.

Berdasarkan hasil penelitian yang dilakukan oleh Zhiwu Liu dan Xiuzhi Zhang (2010), mereka menganalisis nilai mahasiswa dari beberapa mata kuliah industrial enterprise electrification di sebuah universitas untuk mengetahui koneksi nilai dari beberapa mata kuliah yang berbeda melalui teknik decision tree. tabel 3 merupakan database nilai mahasiswa berisi no urut mahasiswa, dan hasil dari beberapa mata kuliah utama (fundamental of electrical engineering-FEE, electrical machine and drive-EMD, automatic control principle-ACP,     automatic control system-ACS, and higher mathematic-HM).

Business Intelligence Pada Industri Pendidikan
Tabel 3. Nilai dari mahasiswa
Untuk memudahkan untuk melakukan data mining, data pada tabel 3 sebaiknya dirubah dengan kondisi sebagai berikut: jika nilai dibawah 60 maka diisi dengan 0 (tidak lulus) dan jika nilai diatas 60 maka diisi dengan 1 (lulus). Dengan menggunakan algoritma decision tree C4.5,

  1. Jika nilai mata kuliah FEE (A) lulus, maka nilai mata kuliah ACS(C1) pada umumnya lulus. Tingkat akurasinya adalah 86.4% dan covering rate untuk jumlah mahasiswa adalah 59.5%.
  2. Jika nilai mata kuliah FEE (A) tidak lulus, dan nilai mata kuliah EMD (B) juga tidak lulus, maka nilai mata kuliah ACS (C1) pada umumnya tidak lulus. Tingkat akurasinya adalah 85.7% dan covering rate untuk jumlah mahasiswa adalah 10%.
  3. Jika nilai mata kuliah FEE (A) tidak lulus, tetapi nilai mata kuliah EMD (B) lulus, maka nilai ACS (C1) masih bisa lulus. Tingkat akurasinya adalah 81.25% dan covering rate untuk jumlah mahasiswa adalah 30.5%.
Business Intelligence Pada Industri Pendidikan
Gambar 1. Decision tree untuk mengevaluasi nilai mahasiswa
Dengan pendekatan diatas dalam mengevaluasi nilai mahasiswa, maka pengelola fakultas dapat melihat hubungan antara kinerja mahasiswa terhadap mata kuliah FEE, ACS, dan EMD. Berdasarkan hasil evaluasi yang telah dilakukan, pengajar mata kuliah EMD perlu memberikan perhatian yang lebih kepada mahasiswa yang tidak lulus EMD dan ACS.



All Rights Reserved by Rumah IT - Rumah Teknologi Informasi © 2013 - 2022
Powered By Blogger

Contact Form

Name

Email *

Message *

Powered by Blogger.